圖書服務 電子書資源
互補數相乘
前部分 :首位數加1再乘首位數
後部分:尾乘尾
例題1:62 × 68 = ?
前部分:(6 + 1) × 6 = 42
後部分:2 × 8 = 16
完整計算:62 × 68 = 4216
a, b = {1, 2, 3, 4, 5, ...,9}
a x 10 + b
a x 10 + (10 - b)
(a x 10 + b) x {a x 10 + (10 - b)}
= (a x 10) x (a x 10) + (a x 10) x 10 - (a x 10) x b
+ (a x 10) x b + b x (10 - b)
= (a x 10) x {(a + 1) x 10} + b x (10 - b)
= a x (a + 1) x 100 + b x (10 - b)
前部分:首位相乘加個位
後部分:尾乘尾
例題2:69 × 49 = ?
前部分:6 × 4 + 9 = 33
後部分:9 × 9 = 81
完整計算:69 × 49 = 3381
a, b = {1, 2, 3, 4, 5, ...,9}
a x 10 + b
(10 - a) x 10 + b
(a x 10 + b) x {(10 - a) x 10 + b}
= (a x 10) x {(10 - a) x 10} + (a x 10) x b
+ (b x 10 x 10) - (b x a x 10) + b x b
= {a x (10 - a)} x 100 + (b x 10 x 10} + b x b
= {a x (10 - a)} x 100 + (b x 100) + b x b
= {a x (10 - a) + b} x 100 + b x b
前部分:互補數加1再乘以疊數的十位數
後部分:尾乘尾
例題3:82 × 33 = ?
前部分:(8 + 1) × 3 = 27
後部分:2 × 3 = 6 即06,在6前加一個0補足兩位數。
完整計算:82 × 33 = 2706
a, b = {1, 2, 3, 4, 5, ...,9}
a x 10 + (10 - a)
b x 10 + b
{a x 10 + (10 - a)} x (b x 10 + b)
= (a x 10) x (b x 10 + b) + 10 x (b x 10 + b)
- a x (b x 10 + b)
= (a x 10 + 10) x (b x 10 + b)
- a x (b x 10 + b)
= {(a + 1) x 10} x (b x 10 + b)
- a x (b x 10 + b)
= {(a + 1) x 10} x (b x 10) + {(a + 1) x 10} x b
- a x (b x 10) - a x b
= (a + 1) x b x 100 + a x 10 x b + 1 x 10 x b
- a x b x 10 - a x b
= (a + 1) x b x 100 + 10 x b - a x b
= (a + 1) x b x 100 + (10 - a) x b
前部分:原本數字
後部分:100減去原本數字
例題1:96 × 88 = ?
前部分:96
前部分:88
後部分:96 - 100 = -4
後部分:88 - 100 = -12
完整計算:
百位計算:前部分後部分交錯相減 (96-12)或(88-4)=84
個位計算:兩後部分相乘 -4 x -12 = 48
得到 84 48
(100 - a) a
(100 - b) b
(100 - a)(100 - b) = 10000 - 100 * (a + b) + ab
= 100 (100 - a - b) + ab
14 x 12 = ?
step 1: 14 + 2 = 16
step 2: 16 x 10 = 160
step 3: 4 x 2 = 8
step 4: 160 + 8 = 168
10 + a
10 + b
(10 + a) x (10 + b) = (10 + a) x 10 + 10 x b + a x b
= (10 + a + b) x 10 + a x b
Steps to be followed for multiplication
Nihilam Sutra is a Specific Method to Divide Numbers using Vedic Mathematics. This Vedic Maths Division Method can be applied when Divisor is closer to power of 10 BUT less than that of it. Using Nikhilam Sutra, you can easily divide when divisor is like 98, 92, 995, 89997, etc.
Paravartya Sutra is a Specific Method for division in Vedic Maths. This Vedic Maths Division Method can be applied when Divisor is closer to power of 10 BUT greater than that of it. Using Paravartya Sutra, you can easily divide when divisor is like 123, 104, 1112, etc.
Anurupyena Sutra is another Specific Vedic Maths Division Tricks which shows how to divide numbers when Nikhilam and Paravartya are not applicable. Using Anurupyena Sutra, we multiply Divisor by a factor so that either Nikhilam or Paravartya Sutra can be applied.
Vinculum is another division in vedic maths tricks which can be applied when Divisor has digits greater than 5. Using Vinculum Process, convert those bigger digits to smaller digit and then apply Nikhilam Sutra or Paravartya Sutras of Division.
Direct Division (Flag Method) is a general method of Division in Vedic Mathematics shows shortcut to divide any types of numbers. It is a shortcut method for division of large numbers.
It is another shortcut method of division in Vedic Maths when Divisor is ending with 9.